Package: FAMT 2.6

FAMT: Factor Analysis for Multiple Testing (FAMT) : Simultaneous Tests under Dependence in High-Dimensional Data

The method proposed in this package takes into account the impact of dependence on the multiple testing procedures for high-throughput data as proposed by Friguet et al. (2009). The common information shared by all the variables is modeled by a factor analysis structure. The number of factors considered in the model is chosen to reduce the false discoveries variance in multiple tests. The model parameters are estimated thanks to an EM algorithm. Adjusted tests statistics are derived, as well as the associated p-values. The proportion of true null hypotheses (an important parameter when controlling the false discovery rate) is also estimated from the FAMT model. Graphics are proposed to interpret and describe the factors.

Authors:David Causeur, Chloe Friguet, Magalie Houee-Bigot, Maela Kloareg

FAMT_2.6.tar.gz
FAMT_2.6.zip(r-4.5)FAMT_2.6.zip(r-4.4)FAMT_2.6.zip(r-4.3)
FAMT_2.6.tgz(r-4.4-any)FAMT_2.6.tgz(r-4.3-any)
FAMT_2.6.tar.gz(r-4.5-noble)FAMT_2.6.tar.gz(r-4.4-noble)
FAMT_2.6.tgz(r-4.4-emscripten)FAMT_2.6.tgz(r-4.3-emscripten)
FAMT.pdf |FAMT.html
FAMT/json (API)

# Install 'FAMT' in R:
install.packages('FAMT', repos = c('https://dcauseur.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Datasets:

On CRAN:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

1.89 score 1 stars 26 scripts 258 downloads 3 mentions 8 exports 2 dependencies

Last updated 3 years agofrom:70dd8d9384. Checks:OK: 3 NOTE: 4. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 08 2024
R-4.5-winNOTENov 08 2024
R-4.5-linuxNOTENov 08 2024
R-4.4-winNOTENov 08 2024
R-4.4-macNOTENov 08 2024
R-4.3-winOKNov 08 2024
R-4.3-macOKNov 08 2024

Exports:as.FAMTdatadefactoemfamodelFAMTnbfactorspi0FAMTraw.pvaluessummaryFAMT

Dependencies:imputemnormt