Package: FADA 1.3.5

FADA: Variable Selection for Supervised Classification in High Dimension

The functions provided in the FADA (Factor Adjusted Discriminant Analysis) package aim at performing supervised classification of high-dimensional and correlated profiles. The procedure combines a decorrelation step based on a factor modeling of the dependence among covariates and a classification method. The available methods are Lasso regularized logistic model (see Friedman et al. (2010)), sparse linear discriminant analysis (see Clemmensen et al. (2011)), shrinkage linear and diagonal discriminant analysis (see M. Ahdesmaki et al. (2010)). More methods of classification can be used on the decorrelated data provided by the package FADA.

Authors:Emeline Perthame, Chloe Friguet and David Causeur

FADA_1.3.5.tar.gz
FADA_1.3.5.zip(r-4.5)FADA_1.3.5.zip(r-4.4)FADA_1.3.5.zip(r-4.3)
FADA_1.3.5.tgz(r-4.4-any)FADA_1.3.5.tgz(r-4.3-any)
FADA_1.3.5.tar.gz(r-4.5-noble)FADA_1.3.5.tar.gz(r-4.4-noble)
FADA_1.3.5.tgz(r-4.4-emscripten)FADA_1.3.5.tgz(r-4.3-emscripten)
FADA.pdf |FADA.html
FADA/json (API)

# Install 'FADA' in R:
install.packages('FADA', repos = c('https://dcauseur.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Datasets:
  • data.test - Test dataset simulated with the same distribution as the training dataset data.train.
  • data.train - Training data

On CRAN:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

1.90 score 6 scripts 218 downloads 8 mentions 3 exports 23 dependencies

Last updated 5 years agofrom:784d171073. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 12 2024
R-4.5-winOKNov 12 2024
R-4.5-linuxOKNov 12 2024
R-4.4-winOKNov 12 2024
R-4.4-macOKNov 12 2024
R-4.3-winOKNov 12 2024
R-4.3-macOKNov 12 2024

Exports:decorrelate.testdecorrelate.trainFADA

Dependencies:classcodetoolscorpcorcrossvalelasticnetentropyfdrtoolforeachglmnetiteratorslarslatticeMASSMatrixmatrixStatsmdamnormtRcppRcppEigensdashapesparseLDAsurvival