Package: FADA 1.3.5
FADA: Variable Selection for Supervised Classification in High Dimension
The functions provided in the FADA (Factor Adjusted Discriminant Analysis) package aim at performing supervised classification of high-dimensional and correlated profiles. The procedure combines a decorrelation step based on a factor modeling of the dependence among covariates and a classification method. The available methods are Lasso regularized logistic model (see Friedman et al. (2010)), sparse linear discriminant analysis (see Clemmensen et al. (2011)), shrinkage linear and diagonal discriminant analysis (see M. Ahdesmaki et al. (2010)). More methods of classification can be used on the decorrelated data provided by the package FADA.
Authors:
FADA_1.3.5.tar.gz
FADA_1.3.5.zip(r-4.5)FADA_1.3.5.zip(r-4.4)FADA_1.3.5.zip(r-4.3)
FADA_1.3.5.tgz(r-4.4-any)FADA_1.3.5.tgz(r-4.3-any)
FADA_1.3.5.tar.gz(r-4.5-noble)FADA_1.3.5.tar.gz(r-4.4-noble)
FADA_1.3.5.tgz(r-4.4-emscripten)FADA_1.3.5.tgz(r-4.3-emscripten)
FADA.pdf |FADA.html✨
FADA/json (API)
# Install 'FADA' in R: |
install.packages('FADA', repos = c('https://dcauseur.r-universe.dev', 'https://cloud.r-project.org')) |
- data.test - Test dataset simulated with the same distribution as the training dataset data.train.
- data.train - Training data
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 5 years agofrom:784d171073. Checks:OK: 7. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 12 2024 |
R-4.5-win | OK | Nov 12 2024 |
R-4.5-linux | OK | Nov 12 2024 |
R-4.4-win | OK | Nov 12 2024 |
R-4.4-mac | OK | Nov 12 2024 |
R-4.3-win | OK | Nov 12 2024 |
R-4.3-mac | OK | Nov 12 2024 |
Exports:decorrelate.testdecorrelate.trainFADA
Dependencies:classcodetoolscorpcorcrossvalelasticnetentropyfdrtoolforeachglmnetiteratorslarslatticeMASSMatrixmatrixStatsmdamnormtRcppRcppEigensdashapesparseLDAsurvival